

RM550 高性能经济型程控电阻模块

说明书

RM550 系列经济型高精度程控电阻模块覆盖 0.7Ω -10M Ω 的输出量程(以及开路和短路输出)、拥有最小 0.02Ω 的步进以及最大 4.0W 的额定功率。 RM550 在全输出范围内表现较为优秀(保守初始精度±0.05%±1 个步进@ T_{cal} ±10°C),适用于对精度和步进有稍高需求的应用。

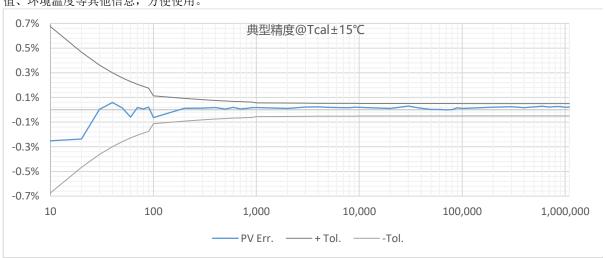
RM550 的通讯接口继承了 QR10 系列的 USB-COM 口,连接电脑即插即用,方便用户调试和测试;同时,增加了隔离型 RS-485 端口(新增扩展指令支持组网),方便用户将本产品以 PCBA 模块的形式集成到自己的项目中。

此外,集成 OLED 显示模块实时显示设定值、输出值、环境温度等其他信息,方便使用。

特征概览

- o 由继电器-电阻网络产生的真实电阻, 支持开路和短路输出
- o 高性能经济型
- 更快的输出响应: 继电器组整体切换时间<7ms
 - 安全顺滑的继电器组切换逻辑:
 - 在继电器组切换过程中输出不会出现开路或短 路的情况
- o 多样的通讯接口: 即插即用的 USB-COM(适合人机交互) 隔离型 RS-485(适合远程模块组网)

隔离型 RS-232 (短程抗干扰)


大量程: 0.7Ω -1.2MΩ(步进约 0.125Ω)

0.7Ω -10MΩ (步进约 2Ω)

- っ 高精度(@T_{cal}±10℃): 0.7Ω-1.2MΩ: ±(0.05%+0.13Ω)
- o 标准版 1-2W 额定功率 可定制 2-4W 额定功率
- o 输出阈值安全限制(用户可自定义)
- 。 标配 OLED 显示
- 小尺寸,与RM55T兼容:7.5(长)×14.2(宽)×1.7(厚)cm

适用于

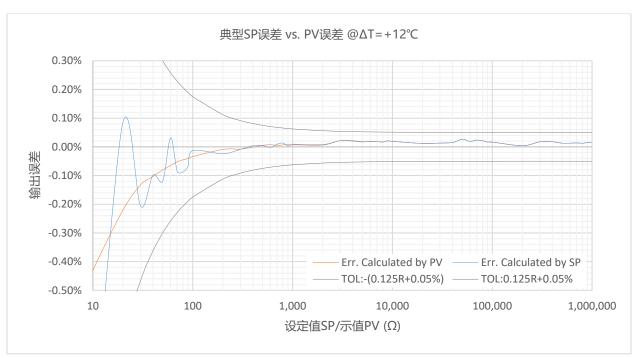
- 。 工业自动化测试
- o 传感器模拟
- o 传感器校准
- o 其他代替传统电阻箱的应用
- o

订货码

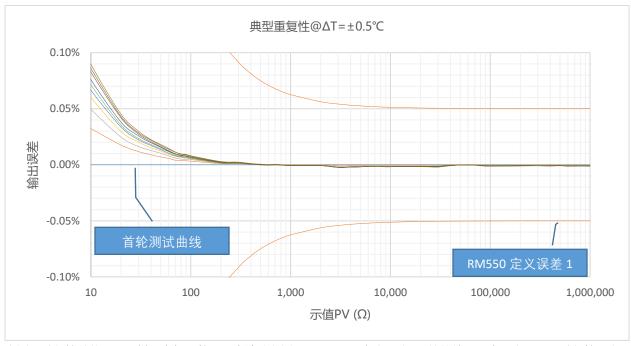
RM550	订货码	描述		
	RM550-AM-2R	0.7 Ω ~10 MΩ, 约 2 Ω 步进,初始精度±(0.05%+2Ω)¹,1~2W 额定功率, USB + ISO RS-485		
	RM550-1M2-R1	0.7 Ω ~1.2 MΩ, 约 0.125Ω 步进, 初始精度±(0.05%+0.13Ω)¹,1~2W 额定功率, USB + ISO RS-485		
标准版	RM550-M3-R04	0.7 Ω ~320 kΩ, 约 0.04 Ω 步进, 初始精度±(0.05%+0.13Ω) ¹ ,1~2W 额定功率, USB + ISO RS-485		
	RM550-3K-R02	0.5 Ω ~3 kΩ, 约 0.02 Ω 步进, 初始精度±(0.05%+0.13Ω) ¹ ,1~2W 额定功率, USB + ISO RS-485		
改装项	RM550-PORT-RS232	标准版改为 USB + ISO RS-232 通讯端口		
以农坝	RM550-PWR-2-4W	标准版改为 2~4W 额定功率		

- 1 不同量程精度定义可能不同,详见下文"初始精度"。
- 2 精确的输出范围因机而异、因批次而异。一般来说,同一批次最大输出的差异在上述表格给定值的 1%以内,最小输出值大约在 1.0 Ω 左右。

规格书

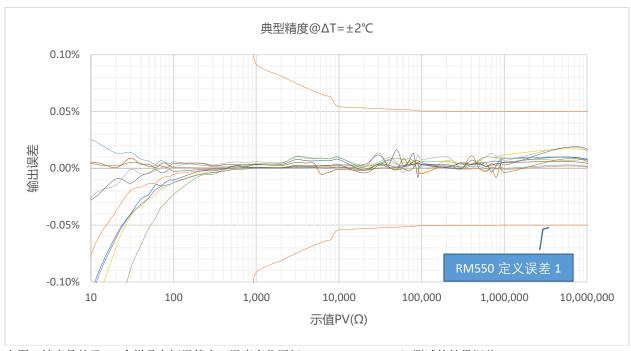

主要参数	规格		备注		
输出					
	误差输出范围	误差 1@T _{cal} ±10 ℃ (T _{cal} 一般为 23℃)	误差 2@全温域	精度定义条件: 1. 在继电器开关 100k 次以内,输出电阻低负载功率	
	0.7 Ω ~ 1.2 ΜΩ	±(0.05%+ r ₀)*	±(0.1%+ r ₀)*	(<0.1 W)条件下。 2. 精度定义同时适用于设定	
	1.2ΜΩ ~10ΜΩ	±0.5%	±1%	值(量程范围内)和返回	
初始精度	*当步进值>0.13Ω 时 为 0.13Ω	,r₀取值为一个步进,当划	浡 进值<0.13Ω 时,r₀取值	值。一般情况下,小阻值以 返回值计算精度更高。	
全寿命精度(估算)	初始精度±0.5Ω@:	全输出范围		不考虑基电阻老化等因素	
步进分辨率	详见订货码				
SP 和 PV 差值	<1个步进分辨率			SP: 设定值 PV: 示值(返回值)	
额定功率	额定功率 标准版 1.0~2.0 W (最高 100 Vdc), 因输出阻值而异; 可 定制 2~4W 版本 (最高 100 Vdc)。		详见通讯端口返回数据		
短路和断路输出	支持(短路电阻典	支持(短路电阻典型值<0.1Ω,最大短路电路 2A)			
继电器类型	电磁继电器				
继电器可靠性	切换电压 30VDC@1A: 大于 5 × 10 ^{^5} 次 切换电压 100VDC@0.1A: 大于 2 × 10 ^{^6} 次				
继电器组切换时间	电器组切换时间 < 7 ms				
继电器组切换模式	顺滑模式,切换过程中电阻输出不会出现开路或短路				
最大操作频率	1Hz(间隔 1s 设置新值)			输出电阻额定功率使用条件 下	
极限最大操作频率	5Hz (间隔 0.2s 设置新值)			输出电阻微小功率使用条件 下	
输出端子	按压式快接端子,两线				

规格书 (续)

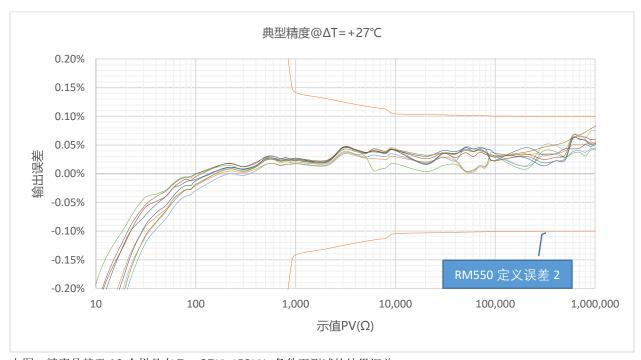

通讯接口				
供电电源	5V±0.25V, 0.5A min.			
极限供电电压	5.5V			
最大峰值电流	<500mA@5V 供电,持续 7ms			
最大保持电流	约 350mA@5V 供电	输出最小值时测得		
供电端口	USB type-B(次优先级供电)或快接端子(主优先级供电)			
通讯接口类型	USB 转串口,以及隔离型 RS-485 或隔离型 RS-232			
USB-COM 驱动芯片	WCH CH340			
RS-485 最大节点数	64 节点(硬件版本 v0.4)、256 节点(硬件版本 v1.1+)			
默认波特率及配置	115,200 bps, 数据位 8,校验位 None,停止位 1			
用户自定义波特率范围	9600~115200 bps (固件版本 v0.56+)			
通讯协议	私有 AT 指令集(详见下文)			
附加功能				
环境温度测量	支持,典型准确度±2℃			
OLED 显示	支持。 主要显示模块信息、设定值(SP)、输出值(PV)、 输出两端允许的最高电压(U<)、环境温度和校准源等。	开机显示信息: S/N, 型号,用户自定义 S/N (US/N),默认波特率, FW版本,量程等		
量程或额定功率定制	支持(非标配)。 可定制最大额定功率 4W。 可定制最大输出范围 0.7Ω-20MΩ(>1.2MΩ 精度约 0.5%- 1%)。			
一般规格				
使用环境温度	0 °C to 50 °C			
相对湿度	至 90 % 非凝露			
存储温度	-20 °C 至 75 °C			
尺寸	7.5 (长)×13.2 (宽)×1.7 (厚) cm			
重量	75 g			
配件	塑料支撑柱及 M3 螺丝 x4			
配件(选配)	1.5m 高品质 USB type-B 线 ×1			
质保	1年			

典型特性

除非另有说明,所有测试基于样品在室温下测试数据,表中精度是指以参考表读数为准的相对精度。所用参考表的精度在 $1M\Omega$ 量程以内优于 $\pm 0.01\%$,推算绝对精度时应考虑该参考表的不确定度。 定义: $\Delta T =$ 测试时的环境温度-校准时环境温度

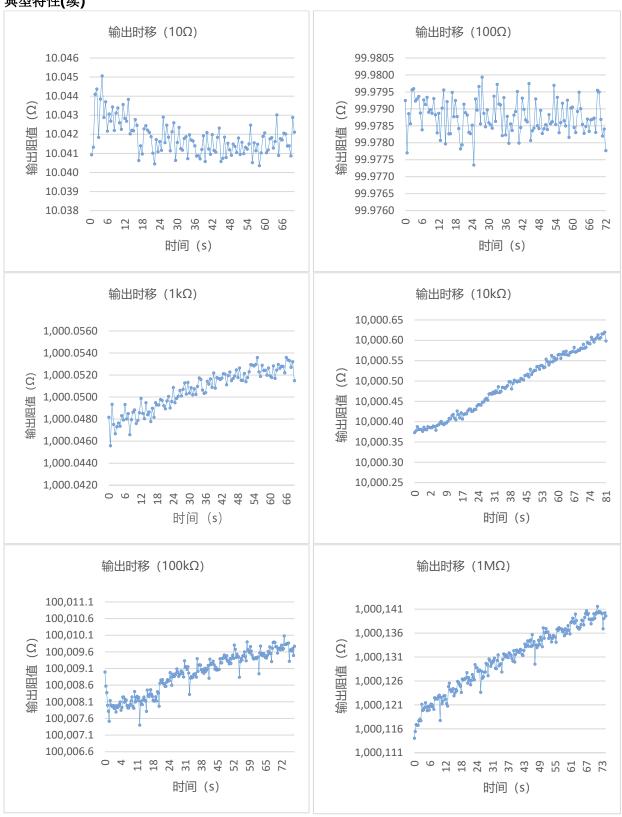


上图:基于 SP(Setpoint,设定值)和基于 PV(Process Value,返回值/示值)与参考表测量值分别计算输出误差。输出低于 $1k\Omega$,整体而言 PV 更接近实际输出电阻的阻值; $1K\Omega$ 以上可忽略二者差异。

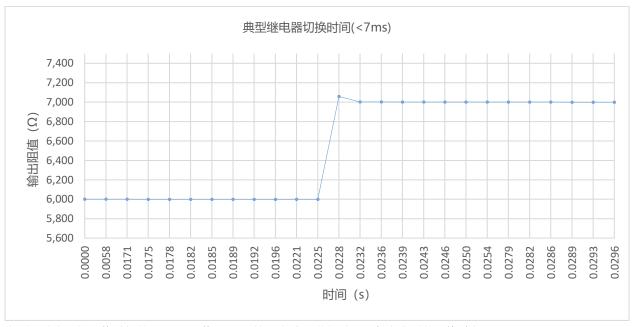


上图: 重复性是基于同一样品在恒温箱(温度波动范围 $T_{cal}\pm 0.5^{\circ}$ C)连续测试 10 轮的结果。为更直观展示重复性,上图做了归一化处理,各误差曲线均为与首轮测试结果对比的相对误差。

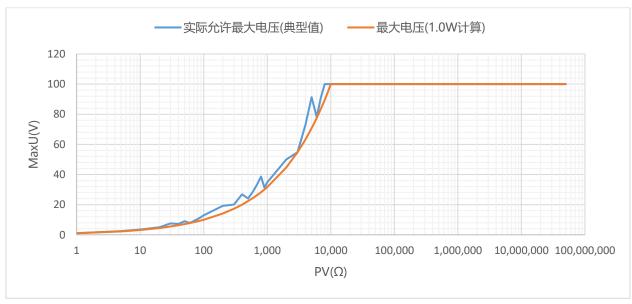
典型特性(续)



上图:精度是基于 10 个样品在恒温箱内(温度变化区间: T_{cal} - 2° C \sim T_{cal} + 2° C)测试的结果汇总

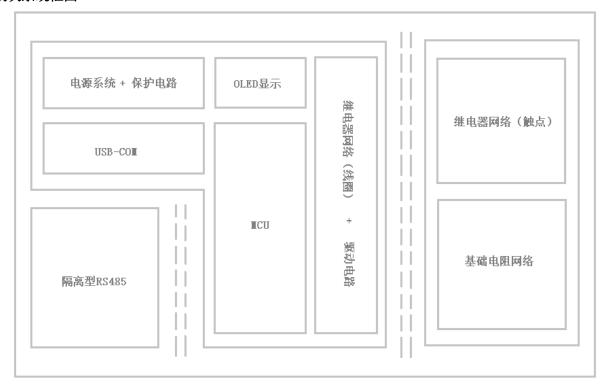

上图: 精度是基于 10 个样品在 T_{cal} +27°C(50°C)条件下测试的结果汇总

典型特性(续)

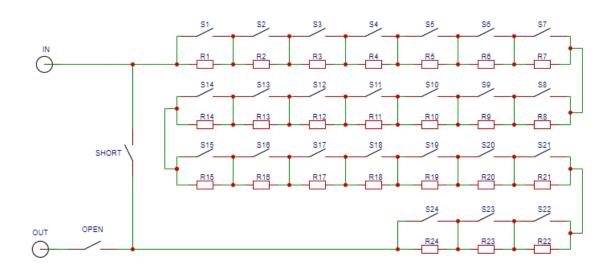


典型特性(续)

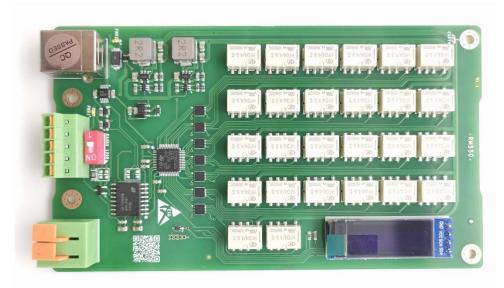
以上各图:由于受继电器线圈温升、继电器触点 EMF、寄生电容/电感、测量仪器或测量方法等因素的影响,通常输出电阻测量值需要经过一段时间才能稳定下来,这个过程可能持续数秒乃至数分钟。在高精度或长时间保持固定值应用中或许应该考虑到这一点(更高标准的应用推荐 BMR-L 系列)。测试方法是在输出新值的第一瞬间(t=0)开始测量,并记录约 1min 左右的测量数据。



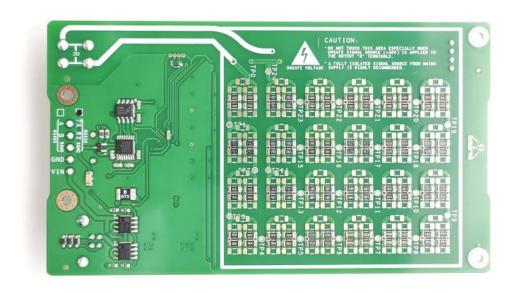
上图:继电器组切换时间抽取 $6k\Omega$ 切换至 $7k\Omega$ 这一上升沿进行量测,代表典型的切换过程。


上图: RM550 标准版基础电阻的额定功率是 1.0W,而实际上对于绝大多数的输出值(PV),其额定功率通常在 1W 至 2W 之间。用户可根据串口实际返回的 MaxU 来使用; 简化起见,也可一律按照 1W 根据公式 MaxU= √(PV*1)计算出的额定电压来处理。需要注意的是,输出电阻两端最大施加电压不能超过 100V。

模块系统框图


上图: RM550 模块系统框图

工作原理



上图:继电器-基础电阻阵列以及输出短路、断路原理图(注:未通电状态下以及刚上电后,图中所有开关均为开启状态)

端口信号分配

上图: 模块 TOP 视图 (HW v1.1)

上图: 模块 BOT 视图 (HW v1.1, 上图为 RS-232 接口)

其中信号电源接线端子(中,5PIN)的引脚信号分配为(以方框记号标记区分 RS-485/RS-232):

信号定义	功能	
A/Tx	RS-485 差分信号 A / RS-232 TXD	
B/Rx	RS-485 差分信号 B / RS-232 RXD	
RGND	RS-485 保留地(可选接)/ RS-232 GND(必接)	
GND	模块供电(负)	
VIN	模块 5VDC 供电(正), 最大请勿超过 5.5V	

BOT 面标记"-R-"的端子为电阻输出快接端子。USB 端口可直接连接电脑,上位机软件通过映射的 COM 口发送指令控制。

使用须知

防静电措施

本产品以 PCBA 模组形式提供给用户,尽管在设计中各主要接口增加了 ESD 防护,然而用户在安装、调试、测试过程中需做好静电防护,以防静电损伤或损坏元器件。

防触电!

由于本产品输出电阻支持最高 100V DC/AC 的电压,高压使用时务必做好防护,禁止触碰电路板(特别是电阻继电器区域裸露的针脚)避免人员或设备受损。

使用环境温度和湿度

请在推荐使用环境范围内使用。过高温度可能导致本模块工作异常或损坏,以及导致输出电阻额定功率的下降;高湿度或凝露可能影响输出电阻(特别是1MΩ以上)的准确度以及减少继电器的使用寿命。

安装

电路板请勿直接将其背面(基础电阻所在面)直接放置在桌面上调试或测试,因为这样可能造成高阻值测量异常。推荐安装好附送的塑料支架后再使用。需要指出的是,其中一个 M3 安装孔(有 EARTH 标志)建议与大地连接。

按压式输出端子用于电阻输出,请使用合适的线径(22-14 AWG)。过粗或过细的导线均会造成接触不良。

供电

使用 USB 2.0 及以上的标准 USB 端口即可为本产品供电(以及串口通讯),本产品在继电器切换时需要峰值电流不超过 500mA(最长持续 7ms),可放心使用标准 USB 端口为本模块供电。

此外,通过中间的接线端子也可以为线路板供电,并且是作为高优先级(USB 电源此时被切断,但是 USB 端口仍然可以作为通讯接口使用)。推荐 5.0V 作为供电输入,在高温环境中使用可适当提高供电电压,但最大不得超过 5.5V,否则电路板芯片可能被损坏。

请使用低纹波电源为本产品供电。

测试

上电后,需要等待 OLED 进入主界面才可正常发送控制指令。对用户来说,不能在同一时刻使用 USB-COM 接口和 RS-485 发送指令,否则会造成模块接收信息混乱。

模块电阻输出默认是断路状态(Normal Open),因此每次上电后需要发送指令来闭合干路 OPEN 继电器。闭合该继电器后,电阻默认输出最大值(与 RM55T 不同,不再上电自动装载保存的设定值)。

RM550 在使用过程中继电器线圈会发热,最坏情况下引起周围环境约 6℃的温升,不过温升所引起的阻值变化已包含规格书给定的精度指标中。

组网

使用 USB 集线器(USB HUB) 可以通过电脑同时控制多个模块(不同模块映射在电脑上是不同的 COM 口)。

如需通过串口进行更远距离的通讯,隔离型 RS-485 为多模块组网提供了可能和便利(HW v1.1 版本以上最大支持 256 个节点挂在同一条 RS-485 总线上)。本模块扩展了 AT 指令集,允许主机与总线上的任一模块单独通讯。

通常,RS-232 只能控制一路模块。如有需要,可在各模块通过 RS-485 组网后,自行搭配 RS-232 转 RS-485 模块,以实现 RS-232 控制多路模块的功能。

AT 指令集

用户可通过串口控制软件在 PC 端控制设备的输出、执行用户校准以及查看设备信息等内容。 RS-485 与 USB-COM 口共享同一指令集和通讯协议配置。

	通讯环境配置				
驱动芯片	WCH CH340	WIN 驱动链接 MAC 驱动链接			
驱动安装方法	使用 USB type-C 数据线连接本模块与电脑。电脑自行搜索安装驱动或手动安装驱动。	如正确安装,在 Windows 系 统"设备管理"中可看到如下信 息: ▼ Ports (COM & LPT) □ USB-SERIAL CH340 (COM28)			
默认波特率及配置	115,200 bps, 数据位 8,校验位 None,停止位 1				
指令结束符	'\r' 或 '\n'或字符/ 或字符\	注意: 每条指令末尾需加入指 令结束符。			

AT 指令集扩展

RM550 支持自定义的"AT+XXX@<S/N>"型指令。如果<S/N>与模块本身的序列号相符,则执行指令并应答;否则忽略该指令。该类指令适用于组网应用。

RM550 同时也兼容不含"@<S/N>"的指令,并对这些指令"总是执行并应答"。该类指令简化了长度,适用于模块单独控制(组网时所有模块均执行,但是主机收到的返回数据会乱码)。详见下文使用示例。

固件 v0.57 以上允许用户自定义 S/N (User S/N, 即 US/N)来取代默认的 S/N 进行组网控制,详见下文指令列表。

AT 指令集列表

序号	功能描述	指令 (每条指令末尾需加入指令结束符)	缺省 单位	示例/备注
		① 基础指令		
1	干路 OPEN 继电器闭合	AT+RES.CONNECT		TX: AT+RES.CONNECT\ RX: +OK. 注: OPEN 继电器为常开(Normal Open),因此需要在每次上电后将之闭 合才能正常输出电阻
2	干路 OPEN 继电器断开	AT+RES.DISCONNECT		TX: AT+RES.DISCONNECT\ RX: +OK. 注: 该指令实现输出电阻开路
3	干路 SHORT 继电器闭合	AT+RES.SHORT		TX: AT+RES.SHORT\ RX: +OK. 注: 该指令仅仅将 SHORT 继电器闭合。 要实现输出电阻短路,必须将 OPEN 继电器也闭合
4	干路 SHORT 继电器断开	AT+RES.UNSHORTEN		TX: AT+RES.UNSHORTEN\ RX: +OK. 注: 该指令将 SHORT 继电器断开,恢复常态 NO

AT 指令集列表(续)

5	查询 SP	AT+RES.SP?	Ω	TX: AT+RES.SP?/	
	<u> </u>	, , , , , , , , , , , , , , , , , , ,	12	RX: +RES.SP=100.000	
6	设置 SP	AT+RES.SP= <float string=""></float>	Ω	TX: AT+RES.SP=100/ RX: +OK. +SP(R)=100.000 +PV(R)=100.200 +UMax(V)=12.9 +RLimit(R)=0.0 +TAmb(C)=27.84	
7	设置 SP(递增)	AT+RES.SP+= <float string=""></float>	Ω	TX: AT+RES.SP+=100/ RX: +OK. +SP(R)=200.000 +PV(R)=200.200 +UMax(V)=19.2 +RLimit(R)=0.0 +TAmb(C)=28.04	
8	设置 SP(递减)	AT+RES.SP-= <float string=""></float>	Ω		
9	查询最小输出限制值	AT+RES.RLIMIT?	Ω	TX: AT+RES.RLIMIT?/ RX: +RES.RLIMIT=0.0	
10	设置最小输出限制值	AT+RES.RLIMIT= <float string=""></float>	Ω	TX: AT+RES.RLIMIT=500/ RX: +OK. +CalSrc=F +SP(R)=200.000 +PV(R)=500.200 +UMax(V)=24.1 +RLimit(R)=500.0 +TAmb(C)=28.04 注: 上述指令将最小输出 RLIMIT 设置为 500。此时尽管 SP=200,但是 PV 此时 跟随 RLIMIT。	
11	获取环境温度	AT+RES.T_AMBIENT?			
12	获取输出电阻详细信息	AT+RES.INFO?		TX: AT+RES.INFO?/ RX: +RES.INFO: .SP(R)=200.000 .PV(R)=500.200 .UMax(V)=24.1 .RLimit(R)=500.0 .TAmb(C)=28.5 .TCal(C)=20.4	
	① 模块信息查询				
13	查询继电器使用次数	AT+DEV.RL_CNT?		TX: AT+DEV.RL_CNT?/ RX: +DEV.RL_CNT=100	
14	查询错误代码	AT+DEV.ERRCODE?		TX: AT+DEV.ERRCODE?/ RX: +DEV.ERRCODE= <null></null>	

www.eastwood.tech 文档版本 v0.51 | 2025.2

AT 指令集列表(续)

15	查询模块综合信息	AT+DEV.INFO?	TX: AT+DEV.INFO?/ RX: +DEV.INFO: .SN=00000003 .USN(EN=0)=00000001 .TYPE=RM550-1M2-R1 .PRDSTEP=CHEK .FW=0.8 .HW=0.4H .TCR(ppm)=25 .PWR(W)=1.0 .MAXU(V)=100.0 .PROD=20231101 .RL_CNT=167		
	.ERRCODE= <null></null>				
16	设置通讯波特率	AT+DEV.BAUDRATE= <string></string>	TX: AT+DEV.BAUDRATE=9600/RX: +ok 设置后立即生效。 注意波特率范围为: 9600~115200 之间(9600, 14400, 19200, 38400, 43000, 57600, 76800 和 115200 其中的一种)。另外开机时可从 OLED 显示屏上读取当前设备波特率。		
18	设置用户自定义 S/N (US/N)	AT+DEV.USN= <string></string>	TX: AT+DEV.USN=00000001/ RX: +ok 注意字符串长度必须为 8 位,不可缺 省。		
19	允许使用 US/N 组网通讯	AT+DEV.USN.EN=1	该指令使 US/N 取代 S/N 作为组网通讯的 ID		
20	恢复使用默认 S/N 组网 通讯	AT+DEV.USN.EN=0	该指令使 S/N 恢复作为组网通讯的 ID		

www.eastwood.tech 文档版本 v0.51 | 2025.2 14 / 16

使用示例

示例1(普通操作,输出阻值)

- 步骤 1: 上电后发送 AT+RES.CONNECT\r\n 闭合干路 OPEN 继电器
- 步骤 2: 发送 AT+RES.SP=123.4\r\n 将输出设置为 123.4Ω

示例 2 (模拟开路和短路)

- 步骤 1: 上电后发送 AT+RES.CONNECT\r\n 闭合干路 OPEN 继电器
- 步骤 2: 发送 AT+RES.SHORT\r\n 闭合 SHORT 继电器,此时输出短路
- 步骤 3: 发送 AT+RES.DISCONNECT\r\n 复位干路 OPEN 继电器,此时输出开路

示例 3 (使用 S/N 作为 ID 进行 RS-485 组网)

- 步骤 1: 将主机、从机#0000001 和从机#0000002 通过 RS485 总线组网连接好(各模块差分线 A 互联, 差分线 B 互联,根据需要通过板载拨码开关使能从机差分信号 AB 之间 120Ω 匹配电阻)
- 步骤 2: 主机发送 AT+RES.CONNECT\r\n 闭合所有从机的干路 OPEN 继电器,所有从机应答 (不过由于从机应答时序不可能完全一致,主机收到的数据大概率会乱码)
- 步骤 3; 主机发送 AT+RES.SP=123**@00000001**\r\n 将从机#0000001 输出设置为 123Ω, 只有从机#0000001 应答
- 步骤 4: 主机发送 AT+RES.SP=456**@00000002**\r\n 将从机#0000002 输出设置为 456Ω, 只有从机#0000002 应答

示例 4 (使用 US/N 作为 ID 进行 RS-485 组网)

- 步骤 1: 单独连接从机 1,发送 AT+DEV.USN=12345678\将其 US/N 设置为 12345678;发送 AT+DEV.USN.EN=1\ 使 US/N 取代该从机出厂时默认的 S/N。
- 步骤 2: 单独连接从机 2, 发送 AT+DEV.USN=87654321\将其 US/N 设置为 87654321; 发送 AT+DEV.USN.EN=1\ 使 US/N 取代该从机出厂时默认的 S/N。
- 步骤 3: 参考示例 3, 使用新的 US/N (12345678 和 8765432) 进行组网通讯单独控制。

示例5 (Python控制示例)

import serial, time

ser = serial.Serial('COM6',115200,timeout=1,parity=serial.PARITY_NONE)

#定义要打开的串口号、波特率、停止位、校验位,需要在设备管理器中查看弹出的串口号,必须保持一致 ser.write(b'AT+RES.CONNECT\')

#闭合干路继电器

time.sleep(1)

#延时 1s 等待继电器响应

ser.write(b'AT+RES.SP=10\')

#写入 AT 指令(说明书里有规范的格式),这里是将电阻值设为 10

time.sleep(1)

#延时 1s 等待继电器响应

response=ser.readall().decode()

print(response)

ser.close() #关闭串口

外形尺寸及 M3 安装孔位置

Eastwood Instruments

- 略胜一筹.

更多信息: www.eastwood.tech

©2025 Eastwood Instruments (Huizhou) Ltd. 文档如有变更,恕不另行通知.

本文档由 Channing Chang 编写和发布 **未经书面许可,禁止修改本文档**.