

QR10x 通用型袖珍可编程电阻箱

说明书

(自 Kickstarter 众筹版本始)

本产品作为传统电阻箱的升级替代品,具有不输于多数传统电阻箱的精度、输出范围、步进分辨率、重复性和温度漂移系数,优于传统机械式电阻箱的用户界面和操作体验,明显优于多数传统电阻箱的额定功率和尺寸、体积,更重要的是,其实现了电阻输出真正意义上的"可编程"——无论是临时借助集成的键盘人工设置还是利用计算机通过 USB-串口总线自动控制。

使用总线控制可满足数据采集和自动化测试的需 要,使其扩展应用于传感器模拟和传感器自动校 准等领域。

同时,由于设计原理的先天优势,本产品可选用 标准元器件以在提高品质的同时降低制造成本; 基于先进的设计理念和算法,本产品允许用户自 行校准以节省维护费用和保证长期输出精度。

特征概览

- 由信号继电器-电阻网络产生的真实电阻
- 便捷的键盘和实用的 OLED 显示
- USB 转串口通讯接口,支持私有 AT 指令 集
- 初始高精度(>500Ω): ±0.05%(T级); ±0.02%(B级);
- 。 无残余电阻
- 大量程:
 1Ω-630kΩ(步进 0.1Ω/0.07Ω)
 1Ω-1.2MΩ(步进 0.125Ω)
 1Ω-8.4MΩ(步进 1Ω)
- 最大 2.0W 的额定功率
- 输出阈值安全限制(用户可自定义)
- 。 双稳态继电器实现输出断电保持
- 允许用户现场校准,保证 B级以上校准后 短期内可跟随参考表精度
- 内置可充电锂电池
- 便携小体积,坚固耐用的金属外壳:
 5.5 (外径) × 5.5 或 7.0 (高) cm

适用于

- 替代传统电阻箱
- 工业自动化测试
- 困性传感器模拟
- 阻性传感器校准
- 电路在线调试
- 0

缩写/术语对照表

SP	Set Point, (用户) 设定值		
PV	Process Value,(设备)输出值/示值/返回值		
TC 或 TCR	电阻温漂系数		
T _{cal}	校准温度		
ΔT	温差,特指测试环境温度与校准温度的差值		
NPLC	Number of Power Line Cycles,电源周期数		
EMF	Thermal Electromotive Force, 热电势		
(显示屏) K	kΩ (单位)		
(显示屏) M	MΩ (单位)		
MaxU或(显示屏)U<	输出两端允许的最高电压		
(显示屏) F	工厂校准数据生效		
(显示屏)_U	用户校准数据生效		
(显示屏) R>	最小输出限制值		
(显示屏) TS	Temperature Sensor,内部温度传感器		
(显示屏) VB	Voltage of Battery, 电池电压		
(显示屏) STP	Step, 步进		
(显示屏) TOL	Tolerance, 误差		
(显示屏) RGE	Range, 输出范围		
(显示屏) PWR	Power, 额定功率		
(显示屏) OTR	Operating Temperature Range, 工作温度		
(显示屏) C/T	Calibration Temperature, 校准温度		
(显示屏) H/W	Hardware,硬件版本		
(显示屏) F/W	Firmware,固件版本		
(显示屏) S/N	Serial Number, 序列号		
(显示屏) PRD	Production Date, 生产日期		

订货码 ^{1,2,3}

	QR100		-	— — — —	
		A	: ±0.01%, TC<25 ppm	1K-R1	:1Ω~870Ω, 0.1Ω/0.07Ω步进 ⁴
		В	: ±0.02%, TC <25 ppm	2K-RX	:1Ω~1.7kΩ, 0.125Ω步进
县 新订货和		Т	: ±0.05%, TC <50 ppm	AK-1R	:10~11.5kΩ,10步进
取刑り贝闩	QR101		-		
		A	: ±0.01%, TC <25 ppm	1M-R1	:1Ω~630 kΩ, 0.1Ω/0.07Ω 步进 4
		В	: ±0.02%, TC <25 ppm	2M-RX	:1Ω~1.2 MΩ, 0.125Ω步进
		Т	: ±0.05%, TC<50 ppm	AM-1R ⁵	:10~8.4 M0,10步进

1 具体精度等定义参见后文详细参数。

- 2 精确的输出范围因机而异、因批次而异。一般来说,最大输出的差异在上述表格给定值的 5%以内,最小输出 值大约在 1.0 Ω左右。
- 3 A级暂停生产。用户可使用高等级参考表自行校准 B级或 T级以达到更高的精度。
- 4 对于 0.1Ω步进型号,后续制造会使用 0.07Ω步进逐步替代。
- 5 QR101B-AM-1R 暂停生产, QR101T-AM-1R 正常供货。

规格书(黄色突出显示部分为规格书主要新增或修改部分)

主要参数	QR100/101			备注
输出				
	等级范围	T级 @ <mark>T_{cal±}5℃</mark>	B级 @T _{cal} ±3℃	1. <mark>无负载情况下,使用次</mark> 数<1 × 10 ^{^6} 次
初始精度	< 500 Ω	±0.25 Ω	±0.1 Ω	2 \\ DV 二估计符
	500 Ω ~ 2 Μ Ω	±0.05%	±0.02%	2.以ⅠⅤ小胆川异
	>2 MΩ	±0.1%	±0.05 %	
标称步进	0.1 Ω/ <mark>0.07Ω</mark> , 0.1	25Ω 或 1. 0 Ω		
SP 和 PV 差值	<1个标称步进,	典型值为 0.3 个标称	*步进	
综合温漂系数 (> 100 Ω)	T级: <50 ppm B级: <25 ppm			
额定功率	<mark>1.0~2.0 W</mark> (最高	高200 Vdc),因输	出阻值而异	详见串口返回数据
短路和断路输出	不支持			
继电器类型	双稳态信号继电器	器 (电磁继电器)		
继电器可靠性	额定负载*情况下:大于1×10 ^{^5} 次 无负载情况下:大于1×10 ^{^7} 次			*指继电器自身的额定负 载: 1A@30 VDC 或 0.3A@125 VAC
继电器最小触点额定 值/输出最小负载	10uA @ 10 mVDC			该值可能因操作频率和使 用环境而异。 低于该数值使用可能造成 输出电阻接触不良
继电器组切换时间	QR100: < 55 ms QR101: < 95 ms			
继电器组切换模式	自然模式,切换过	自然模式, 切换过程中输出可能会出现短时开路或短路		
推荐最大操作频率	1Hz (间隔 1s 设置	置新值)		
极限最大操作频率	5Hz (间隔 0.2s ì	殳置新值)		输出电阻微小功率使用条 件下
输出端子	接线柱,两线			
通讯接口				-
设备供电/锂电池充 电电源	5V±0.25V, 100m	nA min.		
最大峰值电流	约 50mA@5V,最长持续 0.1s			仅发生于继电器组切换时
供电端口	USB type-C 端口			
通讯接口类型	USB转串口			

规格书 (续)

USB-COM 驱动芯片	WCH CH340	
波特率及配置	115,200 bps, 数据位 8, 校验位 None, 停止位 1	
通讯协议	私有 AT 指令集(详见下文)	
其他功能		
按键	机械按键+硅胶按键帽	非防水保护
显示屏	0.54" OLED, 单色	
显示分辨率	SP: 0.1 Ω 或 6 位 PV: 1 mΩ 或 6 位	
内部温度测量	支持, 典型准确度± 0.1 ℃	
用户现场校准	支持。 保证校准后输出精度不低于初始精度; 保证 B 级以上校准后短期内输出精度理论上可跟随参 考表精度(±0.003%示值±10mΩ) *	*实际效果与参考表精 度、参考表线性度、校准 操作以及设备硬件稳定性 有关。
脱机扫描输出功能	支持	详见下文按键操作说明
最小输出限制	支持,用户自定义	
节电模式	1min 无操作关闭显示屏; 1h 无操作关机(未使用 USB 端口供电情况下)	
一般规格		
电池类型	可充电锂聚合物电池, 循环充放电寿命大于 500 次	
电池续航	约 12 小时@ 1Hz 操作频率	
电池充电时间	3 小时	
电池保存期限	10个月,建议每8个月补充一次电	
使用环境温度	-10 °C ~ 40 °C	
相对湿度	10%至95%非凝露	
存储温度	-20 °C 至 75 °C	
外壳材质	黄铜(主壳体), 阳极氧化铝合金(盖子)	
设备尺寸	QR100: 5.5 cm (外径) × 5.5 cm (高) QR101: 5.5 cm (外径) × 7.0 cm (高)	
设备重量	QR100:约215g QR101:约252g	
配件	M4 香蕉插头线*×2; B级提供工厂校准证书(电子版,样板见附件1)	*单线阻值约 25mΩ
质保	1年	限室内使用

典型特性

除非另有说明,所有测试基于 B级样品在室温下测试数据,表中精度是指以参考表读数为准的相对精度。 所用参考表的不确定度在<1MΩ范围内优于±0.013%。推算绝对精度时应考虑该参考表的不确定度。

定义: ΔT = 测试时的环境温度- 校准时环境温度

上图: 重复性是基于同一样品在室温(波动范围约±**0.2**℃)条件下连续测试**8**轮的结果。误差是基于与首轮结果的对比。

上图:精度是基于同一样品在恒温箱内(温度变化区间:T_{cal}-3℃~T_{cal}+3℃)连续测试10轮的结果。误差 是基于与参考表读数的直接对比,未包含参考表本身的不确定度。

典型特性(续)

上图:典型的继电器组切换时间。示例为监测 $3k\Omega$ 切换至 $4k\Omega$ 这一过程,测量模式二线制,配置 NPLC=0.05。

上图: 由继电器切换产生的"输出电阻噪音"产生于上升沿或下降沿, 在部分阻值切换过程中较为明显。需要指出的是, QR10 的继电器组切换算法未做特殊优化, 因此在个别情况下输出有可能出现短时(ms级)的 开路或短路现象。

典型特性(续)

文档版本 3.0 | 2023.6

典型特性(续)

以上各图:由于受继电器 EMF、寄生电容/电感、测量仪器本身或测量方法等因素的影响,通常输出电阻测量值需要经过一段时间才能稳定下来(排除继电器触点震荡因素),这个过程可能持续数秒乃至数分钟 (经验表明与参与切换的继电器数量有关),在高精度或高频率切换应用中应当考虑这一现象。 测试方法是在输出新值的第一瞬间(t=0)开始测量,并记录约 1min 左右的测量数据(以上使用四线制测 量,配置 NPLC=5,切换顺序为1MΩ-1Ω-10Ω-100Ω-11kΩ-10kΩ-100kΩ-100kΩ)。

上图:基础电阻的额定功率是 1W,而实际上对于绝大多数的输出值(PV),其额定功率通常在 1W 至 2W 之间。用户可根据串口实际返回的 MaxU(额定电压)来使用;简化起见,也可一律按照 1W 根据公式 MaxU= √(PV*1)计算出的额定电压来处理。需要注意的是,输出电阻两端最大施加电压不能超过 200V。

上图: QR101 继电器-基础电阻阵列基本原理图(QR100 基电阻数量为 14 个)。通过算法选择性控制开关 /继电器(S1~S24)的开闭以选通或屏蔽基础电阻(R1~R24),从而输出与设定值(SP)最相近的阻值 (PV)。标称步进值是由最小的基础电阻值决定的,设备无法以更小的步进进行扫描式输出。

面板介绍

使用须知

通讯隔离保护

为防止通讯端口引进外部干扰,同时为避免高压使用时触电风险,请使用 USB 通讯隔离模块隔 离上位机(个人电脑)和本设备。

防触电!

由于本产品输出电阻支持最高 200V DC/AC 的电压,输出端子接高压(>=36V DC/AC)使用时务必做好接地措施(以及通讯端口硬件隔离),禁止触碰输出端子避免人员或设备受损。

使用环境温度和湿度

请在推荐使用环境范围内使用。过高温度可能导致本模块工作异常或损坏,以及导致输出电阻额定功率的 下降;高湿度或凝露可能影响输出电阻(特别是1MΩ以上)的准确度以及减少设备的使用寿命。

安装

未正确接地会导致金属外壳不能起到应有的屏蔽和漏电保护作用。

供电

独立使用时,设备使用内部锂电池的电能。续航时间与用户的操作频率有关,一般可使用数天或数周。一小时无操作即自动关机。在每次开机时系统会检测锂电池电压,低于 3.6V 则不能开机,此时需及时充电。

使用普通的 USB Type-C 数据线即可为本产品供电(锂电池充电以及串口通讯)。在接外部电源的情况下,设备将保持工作而不会自动关机。

测试

测试设备的线缆做好屏蔽和正确接地至关重要,否则可能会引入噪声干扰。推荐接线方式如下图所示:

需要提醒的是, 市电波形的失真以及噪音也可能对测试结果造成影响, 特别是测试仪器与大功率的感性负载共用电源的情况下。另外, 两线测量时请务必考虑到表笔导线电阻的影响(配件导线单条约 25mΩ)。

用户校准

拥有可信赖的参考表、相对稳定的环境温度和正确的操作(特别是1MΩ以上的测量)可使模块在校准后至 少达到规格书上声称的精度。在短期内,保证 B级以上产品校准后理论上可跟随参考表精度(外加不确定 度: ±0.003%示值±10mΩ)。

按键操作 (自 FW v5.93)

序号	功能	操作	注释/示例
1	开机(ON)	长按红色按键● 直到看到开机画面	
1.1	显示屏自动熄灭	1分钟无操作显示屏自动熄灭。 点击任何按钮可唤醒显示。	熄屏状态 USB 通讯不受影响
2	关机(OFF)	长按红色按键●直到屏幕变暗或熄灭	
2.1	自动关机	不连接 USB 线缆情况下,无按键操作1小时后自动关机;连接 USB 线缆,设备会禁止自动关机功能。	硬件 v5.1 及以后的版本才支持。旧版本连接 USB 线缆不会禁止自动关机,需要发送指令来延长关机1小时。
		页面 0 (主页)	
3	页面 0 (主页)	开机后无其他任何操作情况下,显示 U默认状态下, SP 行是隐藏的(除了 SP 的 单位)。 按压红色按钮●1.5 秒可显示 SP 行。	下文所述"页面 0/1/2"特指非编 辑状态下的页面 0/1/2
3.1	设置设定值(SP)	在页面 0: 0~9 数字键/黑色按键●(小数点)+ 红色 按键●(确认)	注:所设数值第一位不能是小 数点。
3.2	取消设置 SP	 在 3.1 编辑过程中(按红色确认键之前): - 双击●取消 - 异常输入比如 "123.45."(两个小数点) 也会取消设置 	取消后系统返回主页(默认状 态)
3.3	改变 SP 单位	在页面 0: 单击红色按键●, SP 单位以"Ω" → "K(kΩ)" → "M(MΩ)"的顺序循环切换	FW v5.93 以前是需要双击改变 单位
3.4	额定电压查看	在页面 0: 第一行"U<"表示当前 PV 的额定电压	每次更新 SP 后,额定电压数 值实时刷新
3.5	查看输出值 (PV)	在页 0/2, 第 3 行	设备的精度定义是基于 PV 与参考表的误差
页面1(传感器页)			
4	页面1	在主页,单击●切换至页面1	
4.1	电池电压(VB)	页面 1, 第一行	电池电压可使用范围为 3.6V (低电压) ~ 4.2V (充满电), 低于 3.6V 设备将不能启动
4.2	温度传感器(TS)	页面 1, 第二行	设备预热后,内置温度传感器 温度可能比外部环境温度高 1~2度
4.3	返回页面 0	在页面 1, 点击●	

按键操作(续)

页面 2 (输出限制页)			
5	页面 2	在页面 1, 单击● 切换至页面 2	
5.1	查看最小输出限制 值(R>)	页面 2 第一行即最小输出限制值	默认为"0",即任何大于 0 的设 定值(SP)都是允许的
5.2	设置最小输出限制 值(R>)	在页面 2 设置"R>": 0~9 数字键/黑色按键●,(小数点)+ 红 色按键●(确认)	若当前 SP 小于"R>", PV 将强 迫输出值为"R>"并在 PV 处标 记"*"。
5.3	改变最小输出限制 值(R>)单位	在页面 2: 单击●, 单位依次变为"Ω" → "K(kΩ)" → "M(MΩ)"	
5.4	返回主页	 - 在设置新的"R>"之后,再次单击 ● 返回至页面 0; - 在页面 2,单击●返回至页面 0 	
		设备信息	
6	查看设备信息 (1/3)	在页面 0: 通过组合键红色按键● +数字键①实现, 显示: - 设备类型(订货码) - 步进(STP) - 误差(TOL) - 输出范围(RGE)	注意:查看设备信息时,USB- 串口通讯部分指令不能实时执 行。 第一子页面显示信息如下: \$P\$ 00.1 **** ****
6.1	查看设备信息 (2/3)	在 6 的状态下: 单击红色按键●,此时依次显示: - 温飘(TCR) - 校准温度(C/T) - 额定功率(PWR) - 工作温度(OTR)	第二子页面显示信息如下: TCR 約0.5c^{PPM} FWR 1.0^W FWR 1.0^W
6.2	查看设备信息 (3-3)	在 6.1 的状态下: 单击红色按键●,此时依次显示: - 硬件版本(H/W) - 固件版本(H/W) - 设备序列号(S/N) - 生产日期(PRD),格式为 yyyymmdd	第三子页面显示信息如下: #/# \4:75 \$/# 20220228
6.3	返回主页	在 6.2 状态下: 单击红色按键●或等待约 30s	

按键操作(续)

	自动扫描输出			
7	自动扫描 (1/2)	在主页: 使用组合按键"● + 数字键②" 进入自动扫 描配置界面: - EN (开启自动扫描),单击● 切 换 "ON (开启)"和"OFF (关 闭)" - LOP (循环),单击● 切换"YES (结束后从头开始继续)"和"NO (结束后停止)" - DIR (步进方向),单击● 切换 "+, INC (正向,递增)"和"-, DEC (反 向,递减)"	R+21 PUTOSCAN OFF +.1NC 注:更复杂的扫描方式可通过 AT 指令来实现	
7.1	自动扫描 (2/2)	 ΔT (扫描步进时间间隔),使用 数字按键设置,范围为1s至99 s。 ΔR (扫描步进),使用数字按键+ ●(小数点)设置。 MIN (扫描范围起始值),设置方 式同上 MAX (扫描范围终止值),设置方 式同上 	注 : ΔR, MIN 和 MAX 的单位不 能编辑更改, 但是它可以根 据设置值的大小自动变为一个 合适的单位。.	
7.2	保存设置并激活下 一条	単击 ●	■ 用于指示当前激活的选项 (表示可以编辑)	
7.3	设置扫描初始值	推荐在开启自动扫描前通过主页上的 SP 设置; 或者在开启自动扫描后也可以通过主 页上的 SP 设置(不过 SP 单位固定为 "Ω"); 或者通过 AT 指令。	默认的扫描初始值是当前 SP 值。	
7.4	暂停/继续	自动扫描功能开启后,在主页单击● 暂停 /继续自动扫描。	SP 旁边出现 "*"表示 SP 是通过 自动扫描功能在后台更改的值; " " 则表示自动扫描暂停。	

按键操作(续)

	用户校准			
8	用户校准	在主页: 组合键"● + 数字键 ③"进入用户校准界 面	准备工作:先将 QR10 接线柱 与参考表连接,推荐四线制接 法	
8.1	中途退出	按压● 1.5 秒,返回主页	编辑过的条目在退出前已经保存。 对固件 v5.93~v5.96 版本, 若有 变更需重启设备。	
8.2	保存&下一页	单击● 保存当前页面设置并切换至下一页		
8.3	EN(用户校准/工 厂校准切换开关)	单击● 切换 "ON" 和"OFF". - "ON": 开启用户校准数据 - "OFF" 关闭用户校准数据(使用工 厂校准数据)	主页行 1, F 指示"正在使用工 厂校准数据", U 指示"正在 使用用户校准数据".	
8.4	C/T – 1/28 记录用户校准环境 温度	 ●击●自动填写内置温度传感器的数值(推荐) 再次单击●取消,或者单击●确认 	也可以使用键盘输入温度(参照 3.1). 点击确认后仍然可以再次编辑 (重新输入一个值)	
8.5	RMIN – 2/28 记录最小输出值	 - 键盘输入参考表的示数(方法参见 3.1) - 或者单击●自动填写一个默认 值,再次单击●取消或单击●确 认 	默认值可以用于检测设备的 "健康"(随着时间推移,继电 器触点可能出现磨损现象)	
8.6	R00 – 3/28 记录校准点 0	 - 键盘输入参考表的示数(方法参见 3.1) - 或者单击●自动填写一个默认 值,再次单击●取消或单击●确 认 		
8.7	R01 – 4/28 记录校准点 1	方法同上		
	记录校准点 2~23		方法同上(8.5~8.7)	
8.8	RMAX - 27/28 记录最大输出值	 - 键盘输入参考表的示数(方法参见 3.1) - 或者单击●自动填写一个默认 值,再次单击●取消或单击●确 认 	对于大于1MΩ的校准点,可 能需要等待数分钟直到测量数 值稳定	
8.9	记录校准日期	通过键盘记录校准日期。支持8个字节。	保存后(方法见 8.4), 返回主页 并实时生效新的设置(固件版 本 <i>v5.93~v5.96 需要重启设备</i>)	

AT 指令集

用户可通过串口控制软件在 PC 端控制设备的输出以及查看设备信息等内容。

通讯和自己的问题。这些问题,这些问题,通讯环境配置。				
驱动芯片	WCH CH340	<u>驱动链接</u> (Driver link)		
驱动安装方法	使用 USB type-C 数据线连接本模块与电脑。电脑自 行搜索安装驱动或手动安装驱动。	如正确安装, 在 Windows 系统"设备管理"中可看到如 下信息:		
波特率及配置	115,200 bps, 数据位 8, 校验位 None, 停止位 1			
<mark>指令结束符</mark>	\r 或 \n	注意: 每条指令末尾需加入 指令结束符。		

AT 指令集列表

序 号	功能描述	指令 (每条指令末尾需加入指令结束符)	缺省单位	示例/备注
		①基础指令	>	
1	查询设定值(SP)	AT+USER.SP?	Ω	TX: AT+USER.SP? <mark>RX:</mark> +USER.SP=1.0000
2	设置 SP	AT+USER.SP=< <i>float string</i> >	Ω	TX: AT+USER.SP=2 RX: +OK. RX: SP(R)=2.000 PV(R)=2.009 UMax(V)=1.5 RLimit(R)=0.000 InnerT(C)=27.68
3	设置 SP (递增)	AT+USER.SP+=< <i>float string</i> >	Ω	初始状态: SP=2.0 TX: AT+USER.SP+=1 RX: +OK. RX: SP(R)=3.000 PV(R)=3.014 UMax(V)=1.8 RLimit(R)=0.000 InnerT(C)=27.68
4	设置 SP (递减)	AT+USER.SP-=< <i>float string</i> >	Ω	初始状态: SP=3.0 TX: AT+USER.SP-=1 RX: +OK. RX: SP(R)=2.000 PV(R)=2.009 UMax(V)=1.5 RLimit(R)=0.000 InnerT(C)=27.68
5	查询输出值 PV	AT+USER.PV?		TX: AT+USER.PV? RX: +USER.PV=10.024

AT指	令集列表(续)			
6	查询最小输出限制值	AT+USER.RLIMIT?	Ω	TX: AT+USER.RLIMIT? RX: +USER.RLIMIT=0.0000
7	设置最小输出限制值	AT+USER.RLIMIT= <i><float< i=""> <i>string</i>></float<></i>	Ω	TX: AT+USER.RLIMIT=10 RX: +OK. RX: SP(R)=2.000 PV(R)=10.024 UMax(V)=3.4 RLimit(R)=10.000 InnerT(C)=27.59
8	获取内部温度	AT+USER.T_SENSOR?	°C	TX: AT+USER.T_SENSOR? RX: +USER.T_SENSOR=27.66
		② 用户校准信	息查询	
9	获取校准数据参考源	AT+UCAL.EN?		TX: AT+UCAL.EN? <mark>RX</mark> : +UCAL.EN=0 <i>'1': 用户校准激活使用</i> <i>'0': 工厂校准激活使用</i>
10	使能/禁止用户校准 数据	AT+UCAL.EN=<'1'/'0'>		TX: AT+UCAL.EN? RX: +UCAL.EN=0 '1': 用户校准激活使用 '0': 工厂校准激活使用
11	获取用户校准数据	AT+UCAL.INFO?	Ω	TX: AT+UCAL.INFO? RX: +UCAL.INFO: USEN =0 DATE=20221025 TEMP=27.13 MAX(cali)=8553299 MAX(math)=8553284 MIN =1.0120 CH0=2.1000 CH1=3.0500 CH2=4.9900
		③ 设备信息3	查询	
12	获取设备温飘	AT+DEV.TCR?	ppm	TX:AT+DEV.TCR? <mark>RX</mark> :+DEV.TCR=25
13	获取设备型号	AT+DEV.TYPE?		TX: AT+DEV.TYPE? RX: +DEV.TYPE=QR101B-AM-1R
14	获取生产日期	AT+DEV.PROD?		TX: AT+DEV.PROD? <mark>RX</mark> : +DEV.PROD= <yyyymmdd></yyyymmdd>
15	获取序列号	AT+DEV.SN?		TX: AT+DEV.SN? RX: +DEV.SN=00000127
16	获取硬件版本	AT+DEV.HW?		TX: AT+DEV.HW? RX: +DEV.HW=5.1N
17	获取固件版本	AT+DEV.FW?		TX: AT+DEV.FW? RX: +DEV.FW=5.963KS

使用示例

- 示例1(开机并通过按键设置 SP 为 1kΩ)
 步骤1:长按红色按键直到显示屏出现内容,松开按键等待进入主页面(页面 0)。
 步骤2(可选):单击黑色按键切换 SP/PV 单位。参考按键操作 3.3。
 步骤3:如果 SP/PV 单位是"Ω",依次点击"1"、"0"、"0"、"0"后,最后单击红色按键确认;
 - 如果 SP/PV 单位是"K",点击"1",最后单击红色按键确认; 如果 SP/PV 单位是"M",点击"O"、黑色按键(小数点)、"O"、"O"、"1",最后单击红色按 键确认。
- 示例 2(USB-串口设置 SP 为 10kΩ)
 - 步骤1:正确配置串口通讯波特率等内容。
 - 步骤 2:发送 "AT+USER.SP=100000\r\n"

错误自检

序号	错误类型	释义
1	开机时闪现"VB<*V"	电池电压不足(小于 3.6 V),请及时充电。
		"*"表示当前电池电压值。
2	ERR.01	此时按红色按键自动关机。请联系厂商
3	ERR.02	此时按红色按键自动关机。请联系厂商

保养与维护(重要)

- o *请勿超额定功率使用。*
- o *请勿在潮湿环境下使用, 避免设备进水。*
- o 请保持外壳清洁(汗渍可能渗入表面油漆层并与黄铜发生化学反应生成黑色锈斑,影响美观)
- o 储存条件下,内置锂电池货架寿命约10个月,建议每8个月补充次电。
- o 机械继电器的触点导通电阻和基础电阻可能会因使用而老化,因此建议执行年度校准。

Eastwood Instruments <mark>- 略胜一筹.</mark>

更多信息: <u>www.eastwood.tech</u>

本产品受中国专利保护: ZL202122003046.7 ZL202130497759.6

©2023 Eastwood Instruments. 文档如有变更, 恕不另行通知.

本文档由 Channing Chang 编写和发布 未经书面许可,禁止修改本文档.